Study of the astrophysical reactions with photon beams and Warsaw active-target TPC

M. Kuich¹, M. Ćwiok¹, W. Dominik¹, A. Fijałkowska¹, M. Fila¹, Z. Janas¹, A. Kalinowski¹,

K. Kierzkowski¹, C. Mazzocchi¹, W. Okliński¹, P. Podlaski¹, M. Zaremba¹, M. Gai²,

D.K. Schweitzer², S.R. Stern², S. Finch^{3,4}, U. Friman-Gayer^{3,4}, S.R. Johnson^{5,4},

T.M. Kowalewski^{5,4}, D.L. Balabanski⁶, C. Matei⁶, A. Rotaru⁶, K.C.Z. Haverson⁷,

R. Smith⁷, R.A.M. Allen⁸, M.R. Griffiths⁸, S. Pirrie⁸, P. Santa Rita Alcibia⁸ ¹ Faculty of Physics, University of Warsaw, Warsaw, Poland ² University of Connecticut, CT, USA

³ Duke University and Triangle Universities Nuclear Laboratory, Durham, NC, USA

Triangle Universities Nuclear Laboratory, Durham, NC, USA

University of North Carolina, Chapel Hill, NC, USA

⁶ IFIN-HH / ELI-NP, Bucharest-Magurele, Romania ⁷ Sheffield Hallam University, UK and

⁸ University of Birmingham, School of Physics and Astronomy, UK

Crucial interests in nuclear astrophysics are (p,γ) and (α,γ) reactions. In particular, those that regulate the ratio of C and O and those that burn 18 O and, therefore, regulate the ratio between 16 O and 18 O in the Universe. Such reactions in the stars happen at energies well below the Coulomb barrier and the respective cross-sections are incredibly small, often below the experimental reach. Therefore, the available experimental results on cross-sections for low energies are very sparse, and theoretical extrapolations are burdened with large uncertainties. An opportunity to elude a part of the experimental limitations is to study the time-reversal reaction, i.e. photo-disintegration. For this purpose, an active-target Time Projection Chamber (TPC) optimized for experiments with high-intensity γ -ray beams was developed and built at the Faculty of Physics, University of Warsaw. Preliminary results of the first measurements performed with Warsaw Active-target TPC will be presented and an outlook on future experiments will be given.