Gamma-spectroscopy studies around the ²⁰⁸Pb core: the ²¹⁰Bi, ²⁰⁶Tl, ²⁰⁵Pb, ²⁰⁷Pb nuclei investigated in neutron capture reactions

N. Cieplicka-Oryńczak¹, C. Michelagnoli², B. Fornal¹, S. Leoni³, G. Benzoni³, A. Blanc², S. Bottoni³, A. Bracco³, G. Colombi², F. C. L. Crespi³, A. Gargano⁴, Ł. W. Iskra¹, M. Jentschel², U. Köster², N. Marginean⁵, R. Marginean⁵, C. Mihai⁵, A. Negret⁵, P. Mutti², J. Pacyna⁶, S. Pascu⁵, N. Pietralla⁷, E. Ruiz-Martinez², J. Sieber⁷, and V. Werner⁷

¹ Institute of Nuclear Physics PAN, Kraków, Poland

² Institut Laue-Langevin, Grenoble, France

³ INFN Sezione di Milano and Università di Milano, Milano, Italy

⁴ INFN Sezione di Napoli, Napoli, Italy

⁵ IFIN-HH, Bucharest, Romania

⁶ AGH University of Science and Technology, Kraków, Poland and

⁷ Technische Universität Darmstadt, Darmstadt, Germany

Nuclei surrounding doubly-closed cores provide an excellent ground for studying two types of couplings: a) between valence nucleons and b) couplings of the valence nucleons with core excitations. The former are the source of information on the effective nucleon-nucleon interaction while the latter may be used as a unique test of various effective interactions (Skyrme, Gogny, etc.) employed in mean-field based models.

We have performed γ -spectroscopic studies of low-spin structures in $^{210}\mathrm{Bi}$, $^{206}\mathrm{Tl}$, $^{205}\mathrm{Pb}$, and $^{207}\mathrm{Pb}$ lying in the close neighborhood of the $^{208}\mathrm{Pb}$ nucleus which is one of the best known doubly-magic cores in nature. The experiments were carried out at Institut Laue-Langevin in Grenoble (France) employing the thermal neutron capture reactions, which are expected to populate the majority of the excited low-spin states up to the neutron binding energy. Gamma rays from the capture states decays were detected by HPGe arrays: FIPPS or EXILL. The double and triple γ -coincidence analysis allowed to significantly extend the experimental information on the low-spin structures in the $^{210}\mathrm{Bi}$, $^{206}\mathrm{Tl}$, $^{205}\mathrm{Pb}$, and $^{207}\mathrm{Pb}$ nuclei, while the analysis of γ -ray angular correlations provided information about transitions multipolarities, which significantly helped with spin-parity assignments.

The 210 Bi and 206 Tl isotopes are only one-proton-one-neutron and one-proton-hole-one-neutron-hole nuclei relative to the 208 Pb core, respectively. We would like to present the comparison between the experimentally established excited structures in 210 Bi and 206 Tl and the results of recently performed shell-model realistic calculations [1]. The large number of low-spin states populated in (n,γ) reactions on 209 Bi and 205 Tl, arising from valence particles/holes excitations, can be used as a very good testing ground for the old and newly developed shell-model interactions on odd-odd spherical nuclei near 208 Pb core. It will allow to benchmark the two-body matrix elements of the residual interaction in this important region of the nuclear chart.

In turn, the ^{205}Pb nucleus has three neutron-holes with respect to the ^{208}Pb core, which makes it even more demanding testing field for the shell-model calculations. In longer perspective the studies of its structure would also stimulate the works on the shell-model description with a term coming from three-body forces in the region of heavier masses nuclei. We would like to present the new findings on the ^{205}Pb low-spin structure including 7 excited states and 85 γ transitions. Furthermore, the ^{207}Pb nucleus, having only one-neutron-hole relative to the ^{208}Pb core, was for the first time studied in a thermal neutron capture reaction, employing a multidetector HPGe coincidence setup (FIPPS). We would like to present the preliminary results of the γ -coincidence analysis which on the later stage will provide valuable information on the low-spin excited states in this nucleus and allow for instructive comparisons with the theoretical approaches taking into account couplings between the valence hole of ^{207}Pb and the ^{208}Pb core excitations [2].

- [1] N. Cieplicka-Oryńczak et al., Phys. Lett. B 802 (2020) 135222.
- [2] G. Colò, P.F. Bortignon, and G. Bocchi, Phys. Rev. C 95 (2017) 034303.