Triaxiality and configuration coexistence in ⁷⁴Zn

M. Zielińska¹, M. Rocchini^{2,3}, A. Illana^{4,5,6}, P.E. Garrett², M. Huyse⁴, E. Rapisarda⁷, P. Van

Duppen⁴, K. Wrzosek-Lipska³, S.M. Lenzi^{8,9}, D.D. Dao¹⁰, F. Nowacki¹⁰, T. Otsuka¹¹,

Y. Tsunoda¹¹, and the S1632LOI (TRIUMF) and IS557 (ISOLDE) collaborations

¹CEA, Université Paris-Saclay, Gif-sur-Yvette, France

² University of Guelph, Canada
³ INFN Firenze, Italy
⁴ IKS, KU Leuven, Belgium
⁵ INFN Legnaro, Italy
⁶ University of Jyväskylä, Finland
⁷ PSI, Villigen, Switzerland
⁸ INFN Padova, Italy
⁹ Universitá di Padova, Italy
¹⁰ IPHC, Université de Strasbourg, France and
¹¹ University of Tokyo, Japan

We explored collectivity of the neutron-rich ⁷⁴Zn nucleus by combining high-statistics β decay, studied with the GRIFFIN γ -ray spectrometer at TRIUMF, with multiple Coulomb excitation performed as the very first experiment with the HIE-ISOLDE facility at CERN. The β -decay study [1] provided firm spin-parity assignments for the 2^+_2 , 3^+_1 , 0^+_2 and 2^+_3 states. The relative B(E2) values deduced using the measured branching and E2/M1 mixing ratios for transitions deexciting the 2^+_2 , 3^+_1 and 2^+_3 states allowed organisation of the states into rotational-like structures, namely a K = 2 ' γ ' band and a K = 0 band built on the 0^+_2 state. The appearance of a ' γ ' band at low excitation energy suggests that the triaxial degree of freedom plays an important role in the structure of ⁷⁴Zn, which is further supported by a value of the spectroscopic quadrupole moment of its first 2^+_1 state deduced from the Coulomb-excitation experiment [2] that is close to zero. This conclusion is consistent with the new results of Monte-Carlo and conventional shell-model calculations, which both predict non-axial shapes of the ground-state bands in neutron-rich Zn nuclei. The excited structure built on the 0^+_2 state is interpreted as having a similar shape as that of the ground state, but arising from fewer neutron excitations across the energy gap for N = 40. This suggests that ⁷⁴Zn belongs to the N = 40 island of inversion, which has previously been thought to be limited from the north by the Z = 26 Fe isotopes.

M. Rocchini, P.E. Garrett, M. Zielińska *et al.*, Phys. Rev. Lett. **130**, 122502 (2023).
 A. Illana, M. Zielińska, M. Huyse *et al.*, submitted to Phys. Rev. C.