Relativistic Configuration-interaction Density Functional Theory: Triaxial Effects and Nuclear Matrix Elements for $\beta\beta$ Decay

Y. K. Wang¹, P. W. Zhao¹, and J. Meng¹ ¹ State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

The relativistic configuration-interaction density functional theory is developed for even-even and odd-odd nuclei and is used to predict the nuclear matrix element of the neutrinoless $\beta\beta$ ($0\nu\beta\beta$) decay in triaxial nucleus ⁷⁶Ge. The triaxiality, which is crucial to the structural properties of ⁷⁶Ge and poses challenges in evaluating the nuclear matrix element, is incorporated within a full model space for the first time. With the consideration of triaxiality, the spectroscopic properties of the $\beta\beta$ -decay partners ⁷⁶Ge and ⁷⁶Se, and the nuclear matrix element governing the two-neutrino $\beta\beta$ ($2\nu\beta\beta$) decay in ⁷⁶Ge are well reproduced, providing solid benchmarks for the theoretical calculations. The inclusion of the triaxial degree of freedom slightly enhances the nuclear matrix element of the $2\nu\beta\beta$ decay while raises that of the $0\nu\beta\beta$ decay significantly by a factor around two. The present results highlight the importance of nuclear triaxial deformation for a high-precision prediction of the $0\nu\beta\beta$ -decay nuclear matrix element and indicate that the goals of next-generation experiments searching for the $0\nu\beta\beta$ decay in ⁷⁶Ge can be achieved using only a quarter of experimental materials.