Evolution of the first mixed-symmetry 2^{+}state in the $\mathrm{N}=80$ isotones*

T. Stetz ${ }^{1}$, R. Zidarova ${ }^{1}$, R. Kern ${ }^{1}$, V. Werner ${ }^{1}$, N. Pietralla ${ }^{1}$, T. Abraham ${ }^{2}$, U. Ahmed ${ }^{1}$, T. Beck 3, R. Borcea ${ }^{4}$, S. Calinescu ${ }^{4}$, G. Colucci ${ }^{2}$, C. Costache ${ }^{4}$, I. Dinescu ${ }^{4}$, K. Gladnishki ${ }^{5}$, K. Hadyńska-Klek ${ }^{2}$, K. E. Ide 1, A. Ionescu ${ }^{4}$, G. Jaworski ${ }^{2}$, M. Kisieliński ${ }^{2}$, D. Kocheva ${ }^{5}$, M. Komorowska ${ }^{2}$, M. Kowalczyk ${ }^{2}$, M. Liliana Cortes ${ }^{1}$, N. Mărginean ${ }^{4}$, R. Marginean ${ }^{4}$, C. Mihai ${ }^{4}$, R.-E. Mihai ${ }^{4}$, P. Napiorkowski ${ }^{2}$, C. M. Nickel ${ }^{1}$, C.-R. Nita 4, M. Palacz ${ }^{2}$, G. Rainovski ${ }^{5}$, J. Samorajczyk-Pyśk ${ }^{2}$, J. Srebrny ${ }^{2}$, L. Stan ${ }^{4}$, M. Stoyanova ${ }^{5}$, S. Toma ${ }^{6}$, A. Trzcińska ${ }^{2}$, K. Wrzosek-Lipska ${ }^{2}$, and B. Zalewski ${ }^{2}$
${ }^{1}$ Technische Universität Darmstadt, Germany
${ }^{2}$ Heavy Ion Laboratory at the University of Warsaw, Poland
${ }^{3}$ Michigan State University, United States of America
${ }^{4}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania
${ }^{5}$ University of Sofia St. Kliment Ohridski, Bulgaria and
${ }^{6}$ Politehnica University of Bucharest, Romania

The evolution of the first mixed-symmetry 2^{+}state in the $\mathrm{N}=80$ isotones from ${ }^{132} \mathrm{Te}$ to ${ }^{142} \mathrm{Sm}$ has been of great interest for the past two decades $[1,2,3,4,5]$. A Coulomb-excitation experiment measuring the M1 transition strength of the $2_{\mathrm{ms}, 1}^{+} \rightarrow 2_{1}^{+}$transition of ${ }^{132} \mathrm{Te}$ gave unusually big and inconclusive results [1]. Therefore, this transition strength has been precisely determined by a direct lifetime measurement of the $2_{\mathrm{ms}, 1}^{+}$state of ${ }^{132} \mathrm{Te}$ with the Doppler shift attenuation method (DSAM), populated after a two-neutron transfer reaction at IFIN-HH. A recent Coulomb-excitation experiment of ${ }^{142} \mathrm{Sm}$ at HIE-ISOLDE yielded absolute matrix elements, yet, M1 character for the $2_{\mathrm{ms}, 1}^{+} \rightarrow 2_{1}^{+}$transition had to be assumed [6]. In order to ascertain the multipolarity of this transition, a complementary experiment was conducted at the Heavy Ion Laboratory (HIL) in Warsaw in 2021. Combined, these experiments will expand the understanding of the first mixedsymmetry 2^{+}state in this isotonic chain.
[1] M. Danchev et al., Phys. Rev. C 84 (2011) 061306(R)
[2] T. Ahn et al., Phys. Lett. B 679 (2009) 1
[3] N. Pietralla et al., Phys. Rev. C 58 (1998) 796
[4] G. Rainovski et al., Phys. Rev. Lett. 96 (2006) 122501
[5] R. Kern et al., Phys. Rev. C 102 (2020) 041304(R)
[6] R. Kern et al., J. Phys.: Conf. Ser. 1555 (2020) 012027

[^0]
[^0]: *Supported by BMBF 05P18RDCIA and 05P21RDCI2

