Evidence for enhanced collectivity in ⁵⁸Fe examined through Coulomb excitation

<u>G. Pasqualato¹, J. Ljungvall¹, A. Stuchbery², S. Bottoni³, E. Cantacuzène¹, P. Garret⁴, K. Hadyńska-Klęk⁵, F. Hammache¹, K. Hauschild¹, C. Hiver¹, M. Kaci¹, D. Kalaydjieva⁶, M. Komorowska⁵, A. Lopez-Martens¹, M. Matejska-Minda⁷, P.J. Napiorkowski⁵, M. Rocchini⁸, K. Stoychev¹, J. Wilson¹, K. Wrzosek-Lipska⁵, M. Zielinska⁶.
</u>

¹ IJCLab, IN2P3/CNRS, Université Paris-Saclay, Orsay, France.

² Department of Nuclear Physics, Australian National University, Canberra, Australia.

³ INFN, Sezione di Milano, Milano, Italy. ⁴ University of Guelph, Guelph, Canada.

⁵ Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland.

⁶ CEA, Université Paris-Saclay, Gif-sur-Yvette, France.

⁷ H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland. ⁸ INFN, Sezione di Firenze, Firenze, Italv.

Abstract

In the region of neutron-rich nuclei below the nickel isotopes (Z=28), the appearance of a new island of deformation, similar to the one around ³²Mg, has been suggested [1–4]. The shell closure manifested for the N=40, Z=28 system ⁶⁸Ni [5] seems to completely disappear when protons are added to, or removed from, the $1f_{7/2}$ orbital. For this reason, this area of the Segrè chart offers the opportunity to test the quality of nuclear models, deepening our knowledge on the evolution of the shell-model orbitals. In this regard, the study of the electromagnetic properties of low-lying excited states in neutron-rich Fe and Cr isotopes is key. ⁵⁸Fe is the heavier stable iron isotope and transition probabilities can be measured by using the well-established multi-step safe-Coulomb excitation method. In particular, by Coulomb exciting ⁵⁸Fe it is possible to measure the reduced transition probability B(E2; $4_1^+ \rightarrow 2_1^+$) and the electric quadrupole moment $Q_s(2_1^+)$. Previous results on the $Q_s(2_1^+)$ are contradictory and the adopted B(E2; $4_1^+ \rightarrow 2_1^+$) value is not reproduced either by recent large scale shell model calculations and mean-field based models, rising the question if there is physics beyond what is included in the models at play for this state.

The Coulomb excitation experiment to study 58 Fe has been successfully performed at ALTO-IJCLab, in March 2023 and preliminary results will be presented with this contribution. A beam of iron with a high enrichment of 58 Fe at 220 MeV energy was provided by the Tandem accelerator and scattered on a 208 Pb target. The γ -rays depopulating the excited states in 58 Fe have been detected with the γ -ray spectrometer nuBall2, composed by 24 clusters of HPGe detectros, in coincidence with the back-scattered 58 Fe ions, detected with the DSSD from HIL-Warsaw.

- [1] M. Klintefjord et al., Phys. Rev. C 95 (2017) 024312.
- [2] J. Ljungvall et al., Phys. Rev. C 81 (2010) 061301.
- [3] J. Kotila and S.M. Lenzi, Phys. Rev. C 89 (2014) 064304.

^[4] S.M. Lenzi, F. Nowacki, A. Poves and K. Sieja, Phys. Rev. C 82 (2010) 054301.

^[5] K. Langanke, J. Terasaki, F. Nowacki, D.J. Dean, and W. Nazarewicz, Phys. Rev. C 67 (2003) 044314.