First direct lifetime determination of the 2^+_1 state of 210 Pb*

C. M. Nickel¹, P. R John¹, V. Karayonchev², V. Werner¹, M. Beckers², D. Bittner², A. Blazhev², A. Esmaylzadeh², B. Falk², C. Fransen², J. Garbe², L. Gerhard², K. Geusen², K. Gladnishki³,

A. Goldkuhle², K. E. Ide¹, J. Jolie², R. Kern¹, E. Kleis², L. Klöckner², D. Kocheva³, M. Ley²,

N. Pietralla¹, G. Rainovski³, F. von Spee², M. Steffan², T. Stetz¹, and J. Wiederhold¹ ¹Technische Universität Darmstadt, Physics Dept.,

Institute for Nuclear Physics, Darmstadt, Germany

² Universität zu Köln, Institute for Nuclear Physics, Cologne, Germany and

³Faculty of Physics, University of Sofia St. Kliment Ohridski, Sofia, Bulgaria

Investigating transitions from the 2_1^+ state to the ground state in nuclei which are in the vicinity of the doubly-magic ²⁰⁸Pb enables constraining parameters of nuclear models, as for example the effective charges of the shell model. Nuclei with only two valence nucleons, such as 210 Po with two valence protons or 206 Hg with two valence proton holes, and 210 Pb with two valence neutrons or 206 Pb with two valence neutron holes are of particular interest [1] due to the dominance of the respective seniority-2 excitations for their lowest-lying states.

Using the 10 MV FN Tandem accelerator at the Institute for Nuclear Physics of the University of Cologne, a two-neutron transfer reaction was performed on a 208 Pb target allowing the direct population of the 2_1^+ state of 210 Pb. Its lifetime was determined by applying the Recoil Distance Doppler-Shift method [2] where the distance between the target and the stopper was varied using the Cologne plunger device. The gamma radiation from de-excitation was detected by eleven high purity germanium detectors at two different angles and the back-scattered particles were measured by six silicon detectors.

Two contaminations in the energy region of the stopped and the Doppler-shifted components of the 2_1^+ state of 210 Pb were identified and the data was corrected accordingly. Thus, the lifetime of the 2_1^+ state of 210 Pb was directly determined for the first time using the Differential Decay Curve Method. The resulting value of 20.2(14) ps is in agreement with an indirectly obtained result from a previous triton measurement [3], but considerably more precise.

[1] D. Kocheva et al., Eur. Phys. J. A 53, 175 (2017).

[2] A. Dewald et al., Prog. Part. Nucl. Phys. 67, 786 (2012)

[3] C. Ellegaard et al., Nucl. Phys. A 162, 1 (1971).

^{*} Supported by the BMBF under Grant No. 05P21RDCI2.