$j-1$ anomalous states in silver nuclei*

S.Lalkovski ${ }^{1}$, S.Kisyov ${ }^{2}$, O.Yordanov ${ }^{3}$, and Ir.B.Vasilev ${ }^{1}$
${ }^{1}$ Faculty of Physics, Sofia University, Sofia, Bulgaria
${ }^{2}$ Lawrence Livermore National Laboratory, USA and
${ }^{3}$ Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

The $j-1$ anomaly observed in some silver nuclei has attracted significant experimental and theoretical interest [1-5] in the last 60 years. The anomaly is expressed by the unusual ordering of the j and $j-1$ states arising from the spherical shell model j^{-3} multiplet, split under unusually strong $Q . Q$ residual interaction [5]. In the mass regions placed away from doubly magic nuclei, the $j-1$ levels appear in energy below the respective j states. The effect is most prominent in the silver isotopic chain where the $\left(7 / 2^{+}, 9 / 2^{+}\right)$doublet arises from $\pi g_{9 / 2}^{-3}$ configuration, but it is not unique for silver nuclei. It is also observed in other systems with pure three-holes configurations. In these nuclei, the splitting $\Delta E=E_{j-1}-E_{j}$ and the $E_{2^{+}}$core energies of the neighbouring even-even nuclei are correlated [6]. Indeed, such a correlation is well pronounced in the $(28,50)$ neutron and proton shells, and to a lesser extent in the lower and higher $(20,28)$ and $(50,82)$ shells.

In order to further study $[7,8]$ the nature of the anomaly and the evolution of the lowest energy states of the $\pi g_{9 / 2}^{-3}$ multiplet we have further examined ${ }^{115} \mathrm{Ag}$ data from a ${ }^{252} \mathrm{Cf}$ source spontaneous fission experiment. This isotope is one of the silver nuclei with best pronounced anomalous $(j, j-1)$ ordering. In addition, we have performed lifetime measurements on ${ }^{103} \mathrm{Ag}$ which is the 'turning point' of the $j-1$ anomaly in the silver isotopic chain. The new results will be discussed in the framework of empirical single- j Shell Model, Rigid-Triaxial Rotor plus Particle Model and Interacting Boson-Fermion Model calculations.
[1] A.de Shalit, I.Talmi, Nuclear Shell Theory, Academic Press, New York, 1963
[2] L.S. Kisslinger, Nuclear Physics 78 (1966) 341
[3] V. Paar, Nucl. Phys. A211 (1973) 29
[4] L.-G. Svensson, et. al., Physica Scripta 14 (1976) 129
[5] A.Escuderos, L.Zamick, Phys.Rev.C73 (2005) 044302
[6] S.Lalkovski, S.Kisyov, Phys.Rev.C106 (2022) 064319
[7] S.Lalkovski et al., Phys. Rev. C96 (2017) 044328
[8] S.Lalkovski et al., Phys. Rev. C87 (2013) 034308

[^0]
[^0]: ${ }^{*}$ This work is partially supported by the Bulgarian Science Fund under contract number KP-06-N68/8.

