j-1 anomalous states in silver nuclei^{*}

 S.Lalkovski¹, S.Kisyov², O.Yordanov³, and Ir.B.Vasilev¹
¹Faculty of Physics, Sofia University, Sofia, Bulgaria
²Lawrence Livermore National Laboratory, USA and
³Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

The j-1 anomaly observed in some silver nuclei has attracted significant experimental and theoretical interest [1-5] in the last 60 years. The anomaly is expressed by the unusual ordering of the j and j-1 states arising from the spherical shell model j^{-3} multiplet, split under unusually strong Q.Q residual interaction [5]. In the mass regions placed away from doubly magic nuclei, the j-1levels appear in energy below the respective j states. The effect is most prominent in the silver isotopic chain where the $(7/2^+, 9/2^+)$ doublet arises from $\pi g_{9/2}^{-3}$ configuration, but it is not unique for silver nuclei. It is also observed in other systems with pure three-holes configurations. In these nuclei, the splitting $\Delta E = E_{j-1} - E_j$ and the E_{2^+} core energies of the neighbouring even-even nuclei are correlated [6]. Indeed, such a correlation is well pronounced in the (28,50) neutron and proton shells, and to a lesser extent in the lower and higher (20,28) and (50, 82) shells.

In order to further study [7,8] the nature of the anomaly and the evolution of the lowest energy states of the $\pi g_{9/2}^{-3}$ multiplet we have further examined ¹¹⁵Ag data from a ²⁵²Cf source spontaneous fission experiment. This isotope is one of the silver nuclei with best pronounced anomalous (j, j-1) ordering. In addition, we have performed lifetime measurements on ¹⁰³Ag which is the 'turning point' of the j-1 anomaly in the silver isotopic chain. The new results will be discussed in the framework of empirical single-j Shell Model, Rigid-Triaxial Rotor plus Particle Model and Interacting Boson-Fermion Model calculations.

- [1] A.de Shalit, I.Talmi, Nuclear Shell Theory, Academic Press, New York, 1963
- [2] L.S. Kisslinger, Nuclear Physics **78** (1966) 341
- [3] V. Paar, Nucl. Phys. A211 (1973) 29
- [4] L.-G. Svensson, et. al., Physica Scripta 14 (1976) 129
- [5] A.Escuderos, L.Zamick, Phys.Rev.C73 (2005) 044302
- [6] S.Lalkovski, S.Kisyov, Phys.Rev.C106 (2022) 064319
- [7] S.Lalkovski *et al.*, Phys. Rev. **C96** (2017) 044328
- [8] S.Lalkovski et al., Phys. Rev. C87 (2013) 034308