Study of neutron-deficient zinc isotopes - production, two proton radioactivity and other decay modes

A. Kubiela¹ and the OTPC@RIKEN collaboration ¹Faculty of Physics, University of Warsaw, Poland

The most neutron-deficient isotopes of zinc known to date are 54 Zn, 55 Zn and 56 Zn. 54 Zn was first observed in 2005 [1] and it is one of a few nuclei that undergo two proton radioactivity. As the most recently discovered decay mode, 2p radioactivity is still not well understood. Exotic 2p emitters are difficult to produce in numbers sufficient for statistically significant analysis. The most thorough investigation of this decay mode was so far only achieved for 45 Fe [2], where the momentum distribution of protons strongly supported a three body model of the decay.

In April 2019, we made an attempt to produce and study 54 Zn at RIKEN facility in Japan. We produced ${}^{54,55\&56}$ Zn in the projectile fragmentation of 78 Kr beam on a beryllium target and measured production cross section for those nuclei using the BigRIPS separator [3]. Furthermore, we registered several 2p decays of 54 Zn along with other decay modes for 55 Zn and 56 Zn using the Warsaw OTPC detector placed at the end of the BigRIPS beamline.

In this contribution, we present and discuss the results of the RIKEN experiment. We show the results of the cross section measurement and we compare them with models and other production methods in hope for finding the best solution for two-proton emitters production. We also show the results for ⁵⁴Zn 2p decays and ⁵⁵Zn beta-delayed decays.

- [1] B. Blank et al., PhysRevLett. 94 (2005) 232501.
- [2] K. Miernik *et al.*, Eur. Phys. J. A **42** (2009) 431-439.
- [3] A. Kubiela *et al.*, Phys.Rev.C **104** (2021) 064610