Evolution of alpha cluster preformation probability in neutron-rich $^{41,45,49}Ca^*$ nuclear systems

Manpreet Kaur¹, D. Choudhury¹, BirBikram Singh², and S. K. Patra^{3,4}

¹ Indian Institute of Technology Ropar, Rupnagar - 140001, India ² Department of Physics, Akal University, Talwandi Sabo - 151302, India

³Institute of Physics, Sachivalaya Marg, Bhubaneswar - 751005, India and

⁴Homi Bhabha National Institute, Anushakti Nagar, Mumbai - 400085, India

The light neutron-rich nuclei play a key role in the nucleosynthesis and α -clustering can significantly affect the astrophysical reaction rates. Therefore, it is intriguing to study the isotopic dependence of α -clustering in light mass Ca isotopic chain with magic proton number. In this work, the clustering effects in ${}^{41,45,49}Ca^*$ nuclei formed in neutron induced reactions have been investigated within the quantum mechanical fragmentation theory based dynamical cluster decay model (DCM) [1]. The results present that while moving towards neutron-rich ${}^{45}Ca^*$ and ${}^{49}Ca^*$ nuclei, the α -cluster preformation factor P_0 deceases considerably. The inculcation of relativistic mean field theory (RMFT) based microscopic T.B.E. [2, 3] within DCM, give comparatively an enhanced α -cluster preformation factor for ${}^{41,45,49}Ca^*$ nuclei in comparison to the case of macroscopic T.B.E. based upon Davidson mass formula. Further, the cross-section associated with α -cluster emission falls off considerably with increasing n/p asymmetry of Ca^* nuclei. This trend is analogous to α -cluster preformation factor trend, demonstrating that P_0 contains the nuclear structure information of decaying nucleus. Furthermore, we inculcate the microscopic nuclear potential constructed via folding the RMFT cluster densities and M3Y nucleon-nucleon interaction within the DCM [4] to calculate the P_0 . The neutron skin thickness R_{skin} of the Ar cluster, complementary to α -cluster, is varied by changing the half-density radius of cluster density and its subsequent impact upon the α -cluster preformation factor is investigated. The results depict that with evolution of neutron skin thickness of Ar cluster, there is a reduction in the α -cluster preformation factor. It portrays a strong correlation among R_{skin} and P_0 in these light mass nuclear systems.

[1]M. Kaur et al., Phys. Rev. C 99 (2019) 014614; ibid Phys. Rev. C 103 (2021) 054608.

[2]R. J. Furnstahl et al., Nucl. Phys. A **598** (1996) 539.

[3]M. Kaur et al., Nucl. Phys. A 1000 (2020) 121871.

[4]A. M. Kobos et al., Nucl. Phys. A **384** (1982) 65.