Lifetime measurement of low-lying yrast states of ¹⁷⁰W*

K.E. Ide¹, V. Werner¹, A. Goasduff^{2,3}, J. Wiederhold¹, P.R. John¹, D. Bazzacco³,

M. Beckers⁴, J. Benito⁵, M. Berger¹, D. Brugnara^{2,3}, M.L. Cortés³, L.M. Fraile⁵, C.

Fransen⁴, A. Gozzelino³, E.T. Gregor³, A. Illana³, J. Jolie⁴, L. Knafla⁴, R. Menegazzo³, D. Mengoni^{2,3}, C. Müller-Gatermann^{4,6}, O. Papst¹, G. Pasqualato⁷, C.M. Petrache⁸,

N. Pietralla¹, F. Recchia^{2,3}, D. Testov^{2,7}, J.J. Valiente-Dobón³, and I. Zanon^{2,3,9}

¹Technische Universität Darmstadt, Physics Department,

Institute for Nuclear Physics, Darmstadt, Germany

²Dipartimento di Fisica dell'Università di Padova, Padova, Italy

³INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy

⁴ Universität zu Köln, Institute for Nuclear Physics, Cologne, Germany

⁵Grupo de Fisica and IPARCOS. Universidad Complutense de Madrid. Madrid. Spain

⁶Physics Division, Argonne National Laboratory, Lemont, Illinois, USA

⁷INFN, Sezione di Padova, Padova, Italy

⁸CNRS/IN2P3, Université Paris-Saclay, Orsay, France and

⁹Dipartimento di Fisica, Universitá di Ferrara, Ferrara, Italy

Recent experiments in the region of the hafnium and tungsten isotopic chains have shown a change in the mean lifetimes of the first 2^+ states in comparison to the previously measured values due to enhanced experimental techniques. The results show an increase of the E2 decay rate of the $2_1^+ \rightarrow 0_1^+$ transition in the tungsten isotopic chain between N = 114 and N = 98 and a significant drop in the transition probability at N = 96, hence, ¹⁷⁰W. Such a drop is not seen in the neighboring isotopic chains raising some doubts on the validity of the data. In addition, the mean lifetimes of the low-lying yrast states of 170 W have not been measured with similar modern techniques [1,2]. An experiment to measure the low-lying level lifetimes of 170 W (N = 96) with the recoil distance Doppler-shift (RDDS) method was therefore performed at Laboratori Nazionale di Legnaro (LNL). For the experiment the GALILEO array [3], consisting of 24 HPGe detectors placed at 5 different detector ring angles, and the GALILEO plunger device [4] were used. Mean lifetimes for the low-lying yrast states were obtained by using γ - γ coincidences and the differential decay curve method (DDCM). The resulting E2 transition probabilities are compared to calculations within the confined β -soft (CBS) rotor model [5]. The CBS calculation which reproduces the confirmed $B(E2; 2_1^+ \to 0_1^+)$ value might suggest a structure close to X(5) [6].

- [1] C. Michel *et al.*, Z. Physik A **298** (1980) 213.
- [2] F. K. McGowan et al., Nucl. Phys. A 580 (1994) 335.
- [3] A. Goasduff et al., Nucl. Instrum. Meth. A 1015 (2021) 165753.
- [4] C. Müller-Gatermann et al., Nucl. Instrum. Meth. A 920 (2019) 95.
- [5] N. Pietralla and O. M. Gorbachenko, Phys. Rev. C 70 (2004) 011304.
- [6] F. Iachello, Phys. Rev. Lett. 87 (2001) 052502.

^{*}Supported by the BMBF under Grant Nos. 05P18RDFN9, 05P21RDFN9 and 05P21RDFN1.