Isomeric structures in the heavy nucleus ²⁵⁰Fm

Jamie Chadderton¹, Daniel Cox¹, Philippos Papadakis², Rolf-Dietmar Herzberg¹, Tom Calverley¹, Paul Greenlees², Dieter Ackermann³, M. Airiau⁴, Kalle Auranen², Hussam Badran², R. Brislet⁴, Peter Butler¹, A. Drouart⁴, Tuomas Grahn², Karl Hauschild⁵, Andrej Herzán², F. P. Hessberger³, Ulrika Jakobsson², Daniel Judson¹, Rauno Julin², S. Juutinen², Matti Leino², Araceli Lopez-Martens⁵, Joonas Konki², Andrew Mistry¹, G. O'Neill¹, Janne Pakarinen², Eddie Parr¹, Jani Partanen², P. Peura², Panu Rahkila², Panu Ruotsalainen², Mikael Sandzelius², Jan Sáren², Catherine Scholey², L. Sinclair⁶, Juha Sorri², Sanna Stolze², B. Sulignano⁴, Christophe Theisen⁴, Juha Uusitalo², Martin Venhart⁷ and Andrew Ward¹.

¹University of Liverpool, United Kingdom, ²University of Jyväskylä, Finland, ³GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany, ⁴CEA, Saclay, France, ⁵CSNSM-IN2P3, Orsay Campus, France, ⁶University of York, United Kingdom, ⁷Institute of Physics, Slovak Academy of Sciences, Slovakia.

In 2016, the S20 experiment was performed at the University of Jyväskylä, utilising the established JUROGAM and RITU [1] setup in conjunction with the SAGE electron spectrometer [2], to produce the isotope ²⁵⁰Fm in the ²⁰⁴HgS(⁴⁸Ca, 2n)²⁵⁰Fm fusion-evaporation reaction with a beam energy of 209 MeV. ²⁵⁰Fm has been previously studied at Jyväskylä [3,4] and has been observed to exhibit a rotational structure based on an isomeric state $K^{\pi}=8^{-}$ with a half-life of 1.92(5) s. Another isomer, with a half-life of 8(2) µs, has been suggested over a decade ago [5], however its configuration remains undetermined. The primary objective of this experiment was to further study the rotational structure of the $K^{\pi}=8^{-}$ isomer first identified by Ghiorso et al [6], and to unambiguously assign its configuration by implementing the recoilelectron tagging capability of SAGE, through the measurement of highly converted, low energy M1 transitions. Secondly, the goal was to determine the configuration of the suggested shortlived isomer, and study the states that feed into it. Analysis of isomeric states in lighter, deformed nuclei in close proximity to the superheavy elements is expected to provide a greater understanding of two-quasiparticle excitations in the region, informing systematic studies of collective properties, and allowing for the validity of theoretical models to be tested at the limits of mass and charge, leading to the island of stability. Work on the S20 dataset has recently commenced and is ongoing, experimental methods and the status of the analysis will be presented.

- [1] P. Greenlees, et al., Eur. Phys. J. A 20, 87–92 (2003).
- [2] J. Pakarinen, et al., Eur. Phys. J. A 50, 53 (2014).
- [3] J.E. Bastin et al., Phys. Rev. C 73, 024308 (2006).
- [4] P. Greenlees, et al., Phys. Rev. C 78, 021302(R) (2008).
- [5] S. Ketelhut, Rotational Structures and High-K Isomerism in ^{248,250}Fm. PhD thesis, University of Jyväskylä (2010).
- [6] A. Ghiorso et al., Phys. Rev. 99, 1048 (1955).
- [7] RD. Herzberg, et al., Nature 442, 896–899 (2006).