Spectroscopy of negative parity bands in ¹⁰⁵Pd ``` B. Kruzsicz^{1,2}, D. Sohler¹, J. Timár¹, I. Kuti¹, Q. B. Chen³, S. Q. Zhang⁴, J. Meng⁴, P. Joshi⁵, R. Wadsworth⁵, K. Starosta⁶, A. Algora¹⁷, P. Bednarczyk⁸ D. Curien⁹, Zs. Dombrádi¹, G. Duchêne⁹, A. Gizon¹⁰, J. Gizon¹⁰, D. G. Jenkins⁵ T. Koike^{11}, A. Krakó^{1,2}, A. Krasznahorkay^1, J. Molnár^1, B. M. Nyakó^1, E. S. Paul^{12} G. Rainovski¹³, J. N. Scheurer¹⁴, A. J. Simons⁵, C. Vaman¹⁵, and L. Zolnai¹ HUN-REN Institute for Nuclear Research (ATOMKI), Debrecen, Hungary ²University of Debrecen, Doctoral School of Physics, Debrecen, Hungary ³Department of Physics, East China Normal University, Shanghai, China ⁴State Key Laboratory of Physics and Technology, School of Physics, Peking University, Beijing, China ⁵School of Physics, Engineering and Technology, University of York, York, United Kingdom ⁶Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada Instituto de Fisica Corpuscular, CSIC-University of Valencia, Valencia, Spain ⁸Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland ⁹ Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France ¹⁰LPSC, IN2P3-CNRS/UJF, Grenoble, France ¹¹ Graduate School of Science, Tohoku University, Sendai, Japan ¹²Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, United Kingdom ¹³ Faculty of Physics, St. Kliment Ohridski University of Sofia, Sofia, Bulgaria ^{14} Université Bordeaux 1, IN2P3- CENBG, Gradignan, France and ¹⁵Department of Physics and Astronomy, SUNY, Stony Brook, New York, USA ``` In palladium isotopes with triaxially deformed nuclear shape lying in the A \sim 100 mass region the appearance of exotic motions, such as gamma vibrations, chiral and wobbling rotations, are expected. Indeed, a soft gamma band has been identified in 104 Pd [1] and a wobbling band has been found in 105 Pd [2]. However, chiral partner bands have not been observed in palladium isotopes to date, although they are expected. We aimed at searching candidates for chiral and 2-phonon wobbling rotations in nucleus $^{105}\mathrm{Pd}$ investigating its negative-parity medium- and high-spin structure. The excited states were studied through the $^{96}\mathrm{Zr}(^{13}\mathrm{C},4\mathrm{n})^{105}\mathrm{Pd}$ reaction at incident energies of 51 and 58 MeV, using the EU-ROBALL IV γ -ray spectrometer in conjunction with the DIAMANT charged particle array. New bands have been observed and the previously reported bands have been extended to higher energies and spins. Altogether six decoupled bands with E2 transitions and one strongly coupled band with M1 + E2 transitions have been found [3]. The obtained energy spectra and $\mathrm{B}(\mathrm{M1})/\mathrm{B}(\mathrm{E2})$ ratios are compared with results of quantum particle rotor model calculations. The properties of the identified bands and their interpretation will be presented. - [1] D. Sohler et al., Phys. Rev. C 85 (2012) 044303. - [2] J. Timár et al., Phys. Rev. Lett. **122** (2019) 062501. - [3] B. Kruzsicz et al., to be submitted to Phys. Rev. C.