Neutron-rich light-nuclei studied via reactions with the ⁹Li beam *

M. Sigmund¹, N. Soić¹, M. Alcorta Moreno², J. Bishop³, A. D. Brooks³, L. E. Charón García², T. Davinson⁴, A. Di Pietro⁵, D. Dell'Aquila^{6,7}, F. Falezza³, M. Freer³, I. Gašparić¹, D. Jelavić Malenica¹, T. Kokalova Wheldon³, M. La Cognata⁵, A. Lennarz², I. Lihtar¹, I. Martel Bravo⁸, M. Milin⁹, C. Müller Gatermann¹⁰, S. Murillo Morales², C. Parker¹¹, S. H. Pirrie³, L. Redigolo¹², B. Reed $^{2,13},$ M. Sferazza $^{14},$ R. Smith $^{15},$ A. Teigelhoefer 2, O. Tindle $^{15},$ and N. Vukman 1,16,17 1 Ruder Bošković Institute, Zagreb, Croatia ²TRIUMF, Vancouver, BC, Canada ³University of Birmingham, Birmingham, UK ⁴ University of Edinburgh, Edinburgh, UK ⁵INFN-LNS, Catania, Italy ⁶INFN - Sezione di Napoli, Naples, Italy ⁷ Universita degli Studi di Napoli "Federico II", Naples, Italy ⁸ University of Huelva, Huelva, Spain ⁹University of Zagreb, Zagreb, Croatia ¹⁰ Argonne National Laboratory, Lemont, IL, USA $^{11}Ohio\ University,\ Athens,\ OH\ USA$ 12 University of Catania, Catania, Italy ¹³St. Mary's University, Nova Scotia, Halifax, Canada ¹⁴ Université Libre de Bruxelles, Bruxelles, Belgium ¹⁵Sheffield Hallam University, Sheffield, UK ¹⁶INFN - Sezione di Perugia, Perugia, Italy and ¹⁷University of Split, Split, Croatia

The broad range of structural phenomena in neutron-rich light nuclei has made them the subject of many experimental and theoretical studies. Despite significant advances in radioactive beam technologies, the nuclear reactions with the neutron-rich nucleus ^9Li have not yet been extensively studied [1, 2]. To date, only a few measurements of elastic scattering are available [3-5], highlighting the need for new studies and high-quality measurements of reactions with this exotic beam. In two experimental campaigns, conducted in 2023 and 2024 at the TRIUMF ISAC-II accelerator facility, the reactions of the high-purity ^9Li beam (E = 8.31 MeV/u, intensity up to 10^7 pps) on the boron target with aluminum backing were measured. The campaigns aimed to study the structure of the neutron-rich light nuclei, from Helium to Carbon isotopes, as well as the reactions with the ^9Li beam.

Thanks to a employed high-resolution silicon detector array, various transfer reactions were measured together with well-separated elastic and inelastic scattering channels. This enabled a measurement of $^9\mathrm{Li}$ elastic scattering on B and Al targets, which will be presented and compared with the published results. In addition, preliminary results from inelastic channels of $^9\mathrm{Li}$ scattering and transfer reactions producing $^{10}\mathrm{Be}$ will be presented. These results will advance the understanding of the nuclear structure of $^9\mathrm{Li}$ and $^{10}\mathrm{Be}$.

- [1] J.J. Kolata et al., Eur. Phys. J. A **52** (2016) 123.
- [2] N. Keeley et al., Prog. Part. Nucl. Phys. 63 (2009) 396-447.
- [3] M. Zahar et al., Phys. Rev. C 54 (1996) 1262.
- [4] D. Peterson et al., Phys. Rev. C 67 (2003) 014601.
- [5] M. Cubero et al., Phys. Rev. Lett. 109 (2012) 262701.

^{*}This work was supported in part by the Croatian Science Foundation under project no. IP-2018-01-1257 and the support of the Center of Excellence for Advanced Materials and Sensing Devices (Grant No. KK.01.1.1.01.0001).