Impact of the β decay ground-state feeding of $^{63}\mathrm{Mn}$ on the Urca cooling process P. Shuai¹ ¹Institute of Modern Physics, Chinese Academy of Sciences, China The Urca cooling process, which emits neutrinos through a cycle of β decays and electron captures, exerts significant influence on the thermal evolution of neutron stars. The neutrino luminosity from a specific Urca pair is predominantly governed by the ground-state to ground-state transition in the corresponding β decay. However, experimental determination of ground-state feeding intensities in β -decay studies remains challenging due to the absence of characteristic γ -rays associated with direct ground-state transitions. Recent advances in total absorption spectroscopy (TAS) have enabled precise determination of true β feeding intensities, including ground-state transitions. In this talk, we elucidate the TAS methodology for measuring ground-state feeding intensities with particular emphasis on its application in astrophysical Urca process studies. Furthermore, we identify the 63 Mn - 63 Fe pair as a critical candidate in Urca cooling requiring TAS-based measurements to resolve current uncertainties in predicted neutrino luminosities.