Spin entanglement in quasi-elastic and (p,2p) reactions*

H. Matsufuji¹, H. Nishibata², H. Sakai³, and T. Wakasa¹

¹Kyushu University, Fukuoka, Japan

²University of Teacher Education Fukuoka, Fukuoka, Japan and

³RIKEN Nishina Center, Wako, Japan

Entanglement is a distinctive feature of quantum systems. Entanglement entropy of von Neumann type, denoted by $\mathcal{E}(C)$, is commonly used to quantify the degree of entanglement between two quantum particles [1]. It is defined as follows:

$$\mathcal{E}(\mathbf{C}) = H\left(\frac{1}{2}(1 + \sqrt{1 - \mathbf{C}^2})\right),\tag{1}$$

where $H(x) \equiv -x \log_2(x) - (1-x) \log_2(1-x)$ [3] and $0 \le \mathcal{E}(C) \le 1$. Here, C is called "concurrence", another measure of entanglement strength that is experimentally accessible.

In this context, spin entanglement in nuclei attracts significant interest in relation to di-nucleon correlations in exotic nuclei, quantum information science, and other fields.

Spin entanglement between two nucleons can be generated through nucleon-nucleon scattering. However, determining C from experimentally generated spin entanglement remains a nontrivial task.

Two methods have been proposed to obtain C: one based on the scattering amplitudes by Miller [2] and the other based on the complete spin polarization of one nucleon by Bai [3].

According to Bai's method, we attempted to extract the C by employing the polarizations of one of the outgoing nucleon: $\langle p_{x'} \rangle^2$, $\langle p_{y'} \rangle^2$, and $\langle p_{z'} \rangle^2$. Here, C is defined as

$$C = \sqrt{1 - \langle p_{x'} \rangle^2 - \langle p_{y'} \rangle^2 - \langle p_{z'} \rangle^2}, \quad \text{and} \quad 0 \le C \le 1.$$
 (2)

Two sets of complete polarization transfer data were used for this analysis. One set is from the quasi-elastic scattering (\vec{p}, \vec{n}) measurement (QES) by Wakasa [4] corresponding to the p-n scattering in the nucleus, and the other set is from the $(\vec{p}, \vec{p}'p'')$ measurement by Noro et~al. [5] corresponding to the p-p scattering in the nucleus. The polarization transfer data $(D_{\rm SS'}, D_{\rm NN'}, D_{\rm LL'}, D_{\rm LS'}, D_{\rm SL'},)$ are used to estimate the $\langle p_{x'} \rangle^2, \langle p_{yy} \rangle^2$, and $\langle p_{zz} \rangle^2$ values. Then C is extracted using Eq.(2), and subsequently substituted into Eq. (1) to obtain the entanglement entropy $\mathcal{E}(C)$.

We found that the $\mathcal{E}(C)$ depends on the polarization direction of the incident proton and takes values between 0.4 and 1.0. Among these, the maximum values $\mathcal{E}(C)^{\max}$ lie between 0.9 and 1.0, depending on the target nucleus and scattering angles. This target dependence can be interpreted as a dependence on the effective nucleon density at the location where the nucleon-nucleon scattering occurs [5]. Our analysis suggests that $\mathcal{E}(C)$ increases monotonically with effective nucleon density, with an increase of approximately 0.1 observed at 30% of the saturation density. The physical significance of these results remains an open question and is currently under investigation. To our knowledge, this is the first trial to extract $\mathcal{E}(C)$ directly from experimental data.

Some of the results from this study have been previously reported in Ref. [6].

- [1] C.H. Bennet et al., Phys. Rev. A 54 (1996) 3824.
- [2] G.A. Miller, Phys. Rev. C 108 (2023) L031002.
- [3] D. Bai, Phys. Rev. C **109** (2024) 034001.
- [4] T. Wakasa, PhD thesis (1997) University of Tokyo, unpublished.
- [5] T. Noro et al., Phys. Rev. C 77 (2008) 044604.
- [6] H. Matsufuji et al., CNS Summer School 2024 and JPS spring meeting of 2025.

^{*}Sakai will introduce the topics.