Preliminary β -Spectrum Measurements with the β -Spectrum Module with Implications for Long-Lived Reactor $\bar{\nu}$ Calculations*

B.C. Rasco¹, T. Ruland¹, T. King¹, K. Rykaczewski¹, M. Febbraro¹, and J.C. Blackmon²

¹Oak Ridge National Laboratory, Oak Ridge TN, U.S.A. and

²Lousiana State University, Baton Rouge LA, U.S.A

 β -spectra measurements have a long history in physics which led to discovery of the $\bar{\nu}$ and parity violating decays. Modern implications of β -spectra measurements include reactor $\bar{\nu}$ predictions, medical physics, and possible identification of exotic physics. Most β -spectra measurements are based on a few simple β decaying nuclei near stability due to the inability to isolate individual β decay components in more complex β decays. Also there are experimental difficulties due to electrons being light charged particles which interact with everything, making experimental setups challenging to design, build, and execute. A recent novel experimental technique developed at Oak Ridge National Laboratory allows isolation of individual β -energy spectra of more complex β decays using the β -Spectrum Module (β SM) integrated with the Modular Total Absorption Spectrometer (MTAS). This technique will greatly expand the number and types of studiable β spectra and the isolation of individual β -decay components to allow one-to-one isolation of emitted $\bar{\nu}$ spectra. Preliminary results from the β SM will be presented along with their impact on long-lived reactor $\bar{\nu}$ predictions [1].

[1] Double Chooz: A. Onillon, https://conferences.iaea.org/event/337/contributions/26542/

^{*} Acknowledgements acknowledgements acknowledgements acknowledgements acknowledgements