Search for shape coexistence in Ca isotopes by complete low-spin spectroscopy via (n_{th}, γ) reactions M. Luciani^{1,2}, S. Bottoni^{1,2}, N. Cieplicka-Oryńczak⁴, S. Leoni^{1,2}, B. Fornal⁴, C. Michelagnoli³, L. Iskra⁴, M. Jentschel³, U. Köster³, N. Mărginean⁵, R. Mărginean⁵, C. Mihai⁵, P. Mutti³, S. Pascu⁵, and C. A. Ur⁶ ¹ Università degli Studi di Milano, Milano, Italy ² INFN sezione di Milano, Milano, Italy ³ ILL, Grenoble, France ⁴ Institut of Nuclear Physics - PAN, Krakow, Poland ⁵ IFIN-HH, Bucharest, Romania and ⁶ ELI-NP, Bucharest, Romania Ca isotopes in the A~40 mass region, lying between the N=20 and N=28 shell closures, are ideal cases to study the evolution of nuclear structure from symmetric to neutron-rich systems. In these nuclei, phenomena like shape coexistence are expected to appear going towards the neutron-rich part of the nuclear chart [1-3]. Their study is essential for understanding the microscopic origin of nuclear deformation [4-7]. The objective of this work is to carry out a complete low-spin spectroscopic study of even-even ^{42,44}Ca and odd-even ^{43,45}Ca isotopes and, together with the already published results on ^{41,47,49}Ca [8], track the evolution of nuclear structure along Z=20. All four isotopes relevant to this work were populated by (n_{th}, γ) , neutron capture reactions exploiting thermal neutrons coming from the ILL (Grenoble) nuclear reactor. γ -rays de-exciting the nuclei of interest, populated at the capture state, were detected by the FIPPS HPGe array [9]. γ - γ coincidence techniques were used to establish the decay schemes, resulting in 10 and 14 new levels and 109 and 180 new γ rays in ⁴²Ca and ⁴⁴Ca, respectively. In this presentation, the population of 0⁺ excited states, possibly associated with shape coexistence, will be discussed. Moreover, preliminary angular correlation studies to pin down the spins and parities of several excited states of ⁴²Ca and ⁴⁴Ca nuclei will also be presented. - [1] J. D. Holt et al., Phys. Rev. C 90 (2014) 024312. - [2] Y. Utsuno et al., Progress of Theoretical Physics Supplement 196 (2012) 304-309. - [3] M. Bender et al., Rev. Mod. Phys. **75** (2003) 121-180. - [4] k. Heyde et al., Rev. Mod. Phys. 83 (2011) 1467-1521. - [5] P. Garrett et al., Progress in Particle and Nuclear Physics 124 (2022) 103931. - [6] S. Leoni et al., Progress in Particle and Nuclear Physics 139 (2024) 104119. - [7] S. Leoni *et al.*, The European Physical Journal Special Topics **233** (2024). - [8] S. Bottoni *et al.*, Phys. Rev. C **103** (2021) 014320. - [9] C. Michelagnoli et al., EPJ Web Conf. 193 (2018) 04009.