Decay spectroscopy studies on the two new isotopes of astatine*

Henna Kokkonen¹, Kalle Auranen¹, Pooja Siwach², Paramasiyan Arumugam³, Andrew D. Briscoe⁴, Sarah Eeckhaud¹, Lidia S. Ferreira⁵, Tuomas Grahn¹, Paul T. Greenlees¹, Pete Jones¹, † Rauno Julin¹, Sakari Juutinen¹, Matti Leino¹, Ari-Pekka Leppänen¹, † Enrico Maglione⁵, Markus Nyman¹, Robert D. Page⁴, Janne Pakarinen¹, Panu Rahkila¹, Jan Sarén¹, Catherine Scholey¹, ¶ Juha Sorri¹, ** Juha Uusitalo¹, and Martin Venhart^{1,6}

¹ Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä, FI-40014, Finland ²Nuclear and Chemical Science Division, Lawrence Livermore National Laboratory, Livermore, 94551, California, USA ³Department of Physics, Indian Institute of Technology Roorkee, Roorkee, 247667, India ⁴Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, United Kingdom ⁵Centro de Física e Engenharia de Materiais Avançados CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon, P1049-001, Portugal and ⁶Institute of Physics, Slovak Academy of Sciences, Bratislava, SK-84511, Slovakia

Two lightest known isotopes of a statine, $^{188}\mathrm{At}$ and $^{190}\mathrm{At},$ were identified in the Accelerator Laboratory of University of Jyväskylä, Finland. The nuclei were produced in fusion-evaporation reactions, and those were subsequently separated from the primary beam using the RITU (Recoil Ion Transfer Unit) gas-filled recoil separator. A proton emission from ¹⁸⁸At was detected, resulting to the observation of the heaviest known proton-emitting nucleus to date. The non-adiabatic quasiparticle model was expanded to interpret the experimental data, suggesting that the proton is emitted from a prolate deformed (2^{-}) state, with a dominant $s_{1/2}$ proton component in the wavefunction. The one-proton separation energy deviates from the systematics, and a possible source for this effect will be discussed in this presentation. For the second lightest known astatine isotope, ¹⁹⁰At, α -decay properties were measured and compared to the systematics. Additionally, the possibility of proton emission from this nucleus is discussed. In this presentation, the experimental details and the results of forthcoming publication of ¹⁸⁸At [1] and the already published ¹⁹⁰At [2] will be presented.

- [1] H. Kokkonen, K. Auranen et al., to be published.
- [2] H. Kokkonen, K. Auranen et al., Phys. Rev. C 107 (2023) 064312

^{*}This research was supported by Research Council of Finland under the Contracts No. 323710, 347154, and 353786

[†]Present address: iThemba LABS, Somerset West, 7129, South Africa

[‡]Present address: European Comission, Joint Research Centre, Eggenstein-Leopoldshafen, 76344, Germany

[§]Present address: University of Helsinki, PL55, Helsinki, FI-00014, Finland

[¶]Present address: MTC Limited, Ansty Park, Coventry, CV79JU, United Kingdom
**Present address: Radiation and Nuclear Safety Authority - STUK, Jokiniemenkuja 1, Vantaa, 01370, Finland