Mass-Asymmetry Impact on Fusion Probability: Insights from the ²²⁰Th System Using Multidimensional Stochastic Dynamics Y. Jaganathen¹, M. Kowal¹, and K. Pomorski¹ ¹National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland In a recent study [1], we introduced a six-dimensional Langevin-based formalism as a proof of principle for modeling heavy-ion fusion dynamics. This approach, incorporating elongation, neck, and asymmetry variables with fully unrestricted motion, naturally produces overdamped dynamics and rapid neck stabilization. Using a Yukawa-plus-exponential folding potential and Gaussian random forces, we achieved excellent agreement with experimental spin distributions and fusion cross-sections for the reactions 64 Ni + 92,96 Zr, thereby validating the robustness of the model. In this contribution, we extend this formalism to investigate the impact of entrance-channel mass asymmetry on fusion probability in the collisions of multiple pairs of projectiles and targets, all forming 220 Th. We allow mass asymmetry to evolve freely alongside shape and angular variables, enabling the system to dynamically explore optimal fusion pathways. Suppression factors related to the Coulomb parameter Z_1Z_2 and compound nucleus excitation energy are analyzed in detail. Our model includes full mass, diffusion, and friction tensors, accounting for off-diagonal couplings, to capture the complex interplay between neck formation, elongation, and entrance-channel symmetry. We focus on different types of reactions ranging from the highly asymmetric $^{16}{\rm O}$ + $^{204}{\rm Pb}$ to more symmetric configurations. The results highlight a strong dependence of spin distributions and fusion probabilities on the projectile-target combination, confirming the predictive power of six-dimensional stochastic dynamics for compound nucleus formation. [1] Y. Jaganathen, M. Kowal, K. Pomorski, Phys. Lett. B 862 (2025) 139302.