Superallowed α -decay of $^{104}\mathrm{Te}^*$

I. Cox¹, R. Grzywacz¹, T. T. King², R. Yokoyama³, Z. Y. Xu¹, K. P. Rykaczewski², S. Nishimura⁴, J. M. Allmond², A. Augustyn⁵, N. Braukman¹, P. Brionnet⁴, A. Esmaylzadeh⁶, J. Fischer⁶, N. Fukuda⁴, G. Garcia⁷, S. Go⁴, S. Hanai², D. Hoskins¹, N. Imai², N. Kitamura², K. Kolos⁸, A. Korgul⁹, B. Kreider¹, C. Mazzocchi⁹, K. Nishio¹⁰, T. Ruland², A. Skruch⁹, and V. Phong⁴

¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

²Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

³Center for Nuclear Study, University of Tokyo,

2-1 Hirosawa, Wako, Saitama 351-0198, Japan

⁴RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan

⁵National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

⁶Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany

⁷Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain

⁸Lawrence Livermore National Laboratory, Livermore, California 94550, USA

⁹Faculty of Physics, University of Warsaw, Warszawa PL 02-093, Poland and

¹⁰Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

The N=50 and Z=50 shell closures create the lightest island of alpha-particle emitting nuclei northeast of the doubly-magic, self-conjugate, $^{100}\mathrm{Sn}$. Neutron-deficient tellurium (Z=52) alpha-emitters were first discovered by Macfarland and Siivola [1], postulating that increased proton-neutron correlations lead to an increase in alpha-particle preformation. They coined the term "super-allowed" alpha-emitters, with enhanced preformation culminating in the decay of $^{104}\mathrm{Te}$ to $^{100}\mathrm{Sn}$. Due to increased alpha preformation, $^{104}\mathrm{Te}$ is predicted as the fasted alpha-emitting nucleus when accounted for decay energy. Two events of $^{104}\mathrm{Te}$ were measured by Auranen et al. Despite limited statistics, the authors placed an upper limit on the half-life via the decay chain of $^{108}\mathrm{Xe}$ [2]. This work reports the measurement of the decay chain of $^{108}\mathrm{Xe}$ to $^{104}\mathrm{Te}$ to $^{100}\mathrm{Sn}$, produced via the projectile fragmentation of $^{124}\mathrm{Xe}$ at RIKEN Radioactive Ion Beam Factory (RIBF). Utilizing a fast-response scintillator-based charged-particle detector [3], we measured the decay properties of $^{104}\mathrm{Te}$, which was populated in the decay of $^{108}\mathrm{Xe}$. The results will be compared with the results of Auranen et al. and compared with numerous theoretical predictions.

- [1] R. Macfarlane and A. Siivola, Phys. Rev. Lett. 14, 144 (1965)
- [2] K. Auranen, et al. Phys. Rev. Lett. 121, 182501 (2018)
- [3] Y. Xiao, et al. Phys. Rev. C 100, 034315 (2019).

^{*}This work was supported by US DOE No. DE-FG02-96ER40983 and NNSA No. DE-NA0003899